
2023/07/11 04:55 1/6 Message Management

TIM Wiki / NEW TIM 6 Documentation - https://wiki.tim-solutions.de/

Message Management

Task

In all levels of a software application there are messages and error messages. These are active and
unrequested sent out messages of the software application to a user or a technical component, which
will perform a reaction upon receiving a message. They have different content and different
semantics and can occur in all levels of the application. In CBA messages and error messages are
grouped together under messages and are treated uniformly.

Error handling, logging and monitoring present special reactions to messages, whereby the same
message can trigger mutliple reactions. While normal messages are normally are shown to the
inactive user on the userinterface, logging information is saved into a logging database to be
displayed to a adminstrator on request. A monitoring system evaluates a specific section of the
messages to get a permanent overview of the systems's work. Messages can also present questions
to a user or inititate a workflow.

In CBA a message carries besides the actual content a timestamp and often additional information
like session, transaction, user etc. This way e.g. invoking capability or invoking duration among others
can be derived from messages with targeted use. The absence of messages can also be evaluated.

The CBA message management is client and mulitlanguageable and can generate parameterised
messages. These can also be besides errors every kind of message and text blocks. This can be e.g.
requests for userinterfaces, formatted messages, text blocks for emails or protocol entries.

Requirements

CBA implements a uniform message management, which also considers requirements for error
messages, logging and monitoring:

Messages are classified under their meaning.
Messages explcitly define together with system settings the necessary reactions. The reaction is
also parameterizable.
When sending a message (e.g. an error) the executed function can optionally be cancelled via a
CbaException or all messages can be collected within a logical transaction bracket (e.g. within a
service call) and sent as one. This way a error tolerant operation is possible.
The messages can have one or more parameters, which are handed over via functions, e.g. the
filename of a not found file.
The message management generates a readable message text from the parameterised
message.
Besides errors other kinds of messages and text blocks can be managed like e.g. Requests for
Userinterfaces or formatted messages.
Messages of underlying program sysmtems like e.g. database systems or file systems are being
transferred into the uniform message management.
The CBA message management is mulitlingual, that means the messages will be generated in
the user's language.

https://doc.tim-solutions.de

Last update: 2021/07/01 09:52 en:software:cba:messages https://wiki.tim-solutions.de/doku.php?id=en:software:cba:messages

https://wiki.tim-solutions.de/ Printed on 2023/07/11 04:55

In distributed applications messages are transparent, that means they are communicated
between service call and service, so that a uniform behaviour independent from the place ot the
message creation is realized.

Architecture

The message management is embedded into the CBA-Framework. It consists of

the message definition
the temporary message buffer
the message functions
prefabricated elements for message display
the logging database
the possibilty of linking a monitoring system

Configuration

The potential messages are configurated with a message number. In the message definition
placholders can be defined for the paramterers that are to be included later. The message texts are
mutlilingual.

Functions

The CBA-Framework offers a set of funtcions for message management:

clearMessage Deleting the message buffer
setMessage Inserting a message into the message buffer

2023/07/11 04:55 3/6 Message Management

TIM Wiki / NEW TIM 6 Documentation - https://wiki.tim-solutions.de/

getMessageText Conversion of a message into a text
getMessages Returning the message buffer
saveMessage Saving a message in the logging database
removeMessage Deleting the most recently set message from the message buffer

The fucntion setMessage will be handed over a message number, possibly message parameters
(e.g. inforamtion about the faulty object or similar things), the classification and a flag for behaviour
specification. More parameters can specify the message more strongly and are particularly important
for error analysis.

With the help of the function getMessagetext and the messsage number a character string is
determined, which is formatted with the given message parameters. {0} is a placeholder for the first
message parameter, {1} for the second and so on. The message parameters are a string, in which an
abitrary number of parameters can be given and are must be seperated by â€š|â€™. The message
automatically gets a timestamp, the session assignment and (if available) the transaction number, so
that messages can be put into context.

example:

message number: 1234
message text: 'The file '{0}' caused the following error: {1}
call: setMessage (1234, “pic.gif|file read-only”, “E”, “e6”, myTable, null, 4711);
message: The file 'pic.gif' caused the following error: file read-only

The function removeMessage can be used to delete the most recently set message from the
message buffer. This way errors can be intercepted program-technically and the effects of a message
can be reverted.

The fucntion getMessage can also be called without writing a message into the messafe buffer. E.g.
multilingual requests, message and similar things can therefore be determined in this userinterface.

getMessages reads the message buffer to evaluate all messages of the transaction.

With saveMessage the relevant messages for the purpose of logging and monitoring are saved into
the database. The logging includes messages, where the flag 'l' is set and where their level is less
than or equal to the logging level, which is set in the system. They can also be read from the
database with the help of system tools. The Monitoring takes place with an application, which
evaluates the in the databased save logging information with its own logic. With the help of the
throught the BLU configurated message buffers the monitoring applictaion can be informed about the
availabilty of new logging information, so that it can react promptly.

Message Classification

Messages underlie the following classification in CBA:

F .. fatal error errors, that prevent the application's further work or significantly impair it

E .. error errors, that can happen in an application's work, only have local effect and which
the user can react to

W .. warnings system's indications on inconsistencies, unfavourable conditions and similar things

https://doc.tim-solutions.de

Last update: 2021/07/01 09:52 en:software:cba:messages https://wiki.tim-solutions.de/doku.php?id=en:software:cba:messages

https://wiki.tim-solutions.de/ Printed on 2023/07/11 04:55

I .. information information to the user
Q .. questions questions to the user, which can be answered with Yes or No

The classification is handed over when calling the function setMessage.

The behaviour of a setMessage call is determined by the flag. It can include the following values:

e .. Exception The message triggers a CbaException, which can be intercepted in any call
hierarchy level, after its handling.

1 .. Logging-Level 1 logging and monitoring information for fatal system errrors
2 .. Logging-Level 2 logging and monitoring information for fatal configuration errors
3 .. Logging-Level 3 logging and monitoring information for fatal application errors
4 .. Logging-Level 4 logging and monitoring information for system errors
5 .. Logging-Level 5 logging and monitoring information for configuration errors
6 .. Logging-Level 6 logging and monitoring information for application errors
7 .. Logging-Level 7 application-specific logging and monitoring information
8 .. Logging-Level 8 application-specific logging and monitoring information
9 .. Logging-Level 9 application-specific logging and monitoring information

The messages are being forwarded to the logging and monitoring, when the given level is less than or
equal to the level given when calling saveMessage.

Behaviour

The message buffer is automatically being cleared at transaction start by calling clearMessage. The
transaction start is implicitly given via a service call, but can also be given explicitly bythe user calling
the function BlTransactionBeginn. All messages of the transaction are being collected in the
message buffer until the next transaction starts. This way with the help of getMessages the list of
accumulated messages from the last transaction can be returned after the transaction ended.

Through the targeted control of the exceptions picking up messages are possible without cancelling
the program sequence. Error tolerant services can be implemented, which e.g. edit error free
information and reject faulty information. With the help of messages the rejected information and the
cause for rejection can clearly be identified.

In distributed applications the CBA-Framework ensures that the messages of the called services are
being transferred into the message list of the called application and possibly trigger a exception. This
way the behaviour is uniform beyond the domain boundaries.

System Messages

System Messages are generated automatically via the CBA-Framework when the following happens:

detected errors in the CBA-Framework
error of underlying systems (e.g. file management, databases, …)

2023/07/11 04:55 5/6 Message Management

TIM Wiki / NEW TIM 6 Documentation - https://wiki.tim-solutions.de/

start and end of a service call
instantiation of a unit

All system messages of the CBA-Framework are generated via the setMessage fucntion.

Application

Messages are genereated in the source code at different places. During a transaction all messages
are cached in a message buffer, so that a sequence of messages can also be created. An important
application example for this are validations. The validation is not cancelled on the first detected error,
but is continued. Thus a better ease of use can be achieved, because multiple errors can be cleared in
one cycle. Through the targeted control of the exceptions picking up messages are possible without
cancelling the program sequence.

Subsequent an example for application of message functions:

 string MyFunction (...)
 {
 string result = null;
 try
 {
 // ... desiredfunctionality

 // special error
 if (...) setMessage(1001, [par0]+"|"+[par1], "E", "e", null,
null, 0);
 // [par0] replaces the placeholder {0} and [par1] the
placeholder {1}
 // Flag 'e' => after error handling a CbaException is called

 // ... more functionality

 // ... return of a language dependent message
 result = getMessageText (1002, ...+"|"+...+"|"+...);
 }
 catch (CbaException se)
 {
 // forwarding of an already handled exception
 throw se;
 }
 catch (Exception e)
 {
 // handling of a new exception
 setMessage(1000, e.Message, "E", "eâ€�");
 }
 finally
 {
 // ... final measures
 }

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception
https://doc.tim-solutions.de

Last update: 2021/07/01 09:52 en:software:cba:messages https://wiki.tim-solutions.de/doku.php?id=en:software:cba:messages

https://wiki.tim-solutions.de/ Printed on 2023/07/11 04:55

 return result;
 }

From:
https://wiki.tim-solutions.de/ - TIM Wiki / NEW TIM 6 Documentation

Permanent link:
https://wiki.tim-solutions.de/doku.php?id=en:software:cba:messages

Last update: 2021/07/01 09:52

https://wiki.tim-solutions.de/
https://doc.tim-solutions.de
https://wiki.tim-solutions.de/doku.php?id=en:software:cba:messages

	Message Management
	Task
	Requirements
	Architecture
	Configuration
	Functions
	Message Classification
	Behaviour
	System Messages
	Application

